

Space Charge Effect at ProtoDUNE

Michael Mooney BNL

BNL DUNE Meeting January 6^{th} , 2016

Introduction

- ◆ Tool exists to study space charge effect at the MicroBooNE detector
 - **SpaCE** Space Charge Estimator
 - Study simple problems first in detail with dedicated simulations
 - Also performs calibration using MicroBooNE's UV laser system and cosmic muons (in progress)
 - LArSoft module exists to hold/access SCE offsets (undergoing modification for generic LArTPC experiment)
 - Now: extend SCE simulation to **ProtoDUNE**

Outline:

- Brief review of Space Charge Effect (SCE) and SpaCE
- Impact of SCE on track reconstruction
- SCE at ProtoDUNE

Space Charge Effect

- ◆ **Space charge**: excess electric **charge** (slow-moving ions) distributed over region of **space** due to cosmic muons passing through the liquid argon
 - Modifies E field in TPC, thus track/shower reconstruction
 - Effect scales with L³, E^{-1.7}

SpaCE: Overview

- ◆ Code written in C++ with ROOT libraries
- ♦ Also makes use of external libraries (ALGLIB)
- ♦ Primary features:
 - Obtain E fields analytically (on 3D grid) via Fourier series
 - Use **interpolation** scheme (RBF radial basis functions) to obtain E fields in between solution points on grid
 - Generate tracks in volume line of uniformly-spaced points
 - Employ ray-tracing to "read out" reconstructed {x,y,z} point for each track point – RKF45 method
- ♦ First implemented effects of uniform space charge deposition without liquid argon flow (only linear space charge density)
 - Also can use arbitrary space charge configuration
 - Can model effects of liquid argon flow (however, interpretation is difficult)

Impact on Track Reco.

- ♦ Two separate effects on reconstructed **tracks**:
 - Reconstructed track shortens laterally (looks rotated)
 - Reconstructed track bows toward cathode (greater effect near center of detector)
- ◆ Can obtain straight track (or multiple-scattering track) by applying corrections derived from data-driven calibration

Nominal Geometry

- ♦ Nominal ProtoDUNE geometry:
 - Drift (X): 3.6 m
 - Height (Y): 5.9 m
 - Length (Z): 7.0 m
- ◆ Dimensions used for simulations slightly different (to simplify calculations):
 - Drift (X): 3.6 m
 - Height (Y): 6.0 m
 - Length (Z): 7.2 m

Modified E Field (Central Z) BROOKHAVEN NATIONAL LABORATORY

Modified E Field (TPC End) BROOKHAVEN NATIONAL LABORATORY

Distortions (Central Z)

Distortions (TPC End)

Modified Geometry

- ◆ Modified ProtoDUNE geometry:
 - Drift (X): 2.2 m
 - Height (Y): 5.9 m
 - Length (Z): 7.0 m
- ◆ Dimensions used for simulations slightly different (to simplify calculations):
 - Drift (X): 2.4 m
 - Height (Y): 6.0 m
 - Length (Z): 7.2 m

Modified E Field (Central Z) BROOKHAVEN NATIONAL LABORATORY

Modified E Field (TPC End) BROOKHAVEN NATIONAL LABORATORY

Distortions (Central Z)

Distortions (TPC End)

Summary

- ◆ **SpaCE** use to study space charge effect and produce SCE distortions throughout a TPC
 - Stand-alone C++ code with ROOT/ALGLIB libraries
- ♦ Have also created LArSoft module to store SCE offsets throughout TPC active volume
 - First created to be used for MicroBooNE currently undergoing modifications to be more flexible for generic LArTPC experiment (including ProtoDUNE)
- Distortions at ProtoDUNE for nominal geometry are quite severe!
 Much larger than those at MicroBooNE (~5 x)
 - 500 V/cm drift field: ~5 cm longitudinal, ~25 cm transverse
 - 250 V/cm drift field: ~20 cm longitudinal, ~60 cm transverse
- ◆ Distortions at ProtoDUNE for **modified geometry** (reduced drift length) are much less bad very similar to those at MicroBooNE (~1.5 x)
 - 500 V/cm drift field: ~1.5 cm longitudinal, ~10 cm transverse
 - 250 V/cm drift field: ~4 cm longitudinal, ~20 cm transverse

BACKUP SLIDES

Compare to FE Results: E

- ◆ Looking at central z slice (z = 5 m) in x-y plane (**MicroBooNE**)
- Very good shape agreement compared to Bo Yu's 2D FE (Finite Element) studies
- ♦ Normalization differences understood (using different rate)

Compare to FE Results: E

- ◆ Looking at central z slice (z = 5 m) in x-y plane (**MicroBooNE**)
- ♦ Very good shape agreement here as well
 - Parity flip due to difference in definition of coordinate system

E Field Interpolation

- ◆ Compare 30 x 30 x 120 field calculation (left) to 15 x 15 x 60 field calculation with interpolation (right) for **MicroBooNE**
- ◆ Include analytical continuation of solution points **beyond** boundaries in model improves performance near edges

Ray-Tracing

- Example: track placed at x = 1 m (anode at x = 2.5 m)
 - z = 5 m, y = [0,2.5] m

MicroBooNE

Track Ionization Electrons: Y Reconstruction

Sample "Cosmic Event"

500 V/cm

MicroBooNE

Half Drift Field

250 V/cm

Complications

- ♦ Not accounting for non-uniform charge deposition rate in detector → significant modification?
- ♦ Flow of liquid argon → likely significant effect!
 - Previous flow studies in 2D... differences in 3D?
 - Time dependencies?

Liquid Argon Flow

Smoking-gun Test for SCE

- ♦ Can use cosmic muon tracks for calibration
 - Possibly sample smaller time scales more relevant for a particular neutrino-crossing time slice
 - Minimally: data-driven cross-check against laser system calibration
- ◆ Smoking-gun test: see lateral charge displacement at track ends of non-contained cosmic muons → space charge effect!
 - No timing offset at transverse detector faces (no E_x distortions)
 - Most obvious feature of space charge effect

35-ton with LAr Flow

35-ton with LAr Flow (cont.)

Simulation of SC Effect

- ◆ Can use SpaCE to produce displacement maps
 - Forward transportation: $\{x, y, z\}_{true} \rightarrow \{x, y, z\}_{sim}$
 - Use to **simulate** effect in MC
 - Uncertainties describe accuracy of simulation
 - Backward transportation: $\{x, y, z\}_{reco} \rightarrow \{x, y, z\}_{true}$
 - Derive from calibration and use in data or MC to correct reconstruction bias
 - Uncertainties describe remainder systematic after bias-correction
- ♦ Two principal methods to encode displacement maps:
 - **Matrix representation** more generic/flexible
 - **Parametric** representation (for now, 5th/7th order polynomials) fewer parameters
 - Uses matrix representation as input → use for LArSoft implementation